העקום הנורמלי (צורת הפעמון)

העקום הנורמלי (צורת הפעמון)

ההתפלגות הנורמלית היא סוג אחד מסוגים רבים של התפלגויות, אך הוא מאוד חשוב מכיוון שנושאי מחקר סטטיסטיים רבים מתפלגים באופן מקורב להתפלגות הנורמלית.

העקום הנורמלי (צורת הפעמון)

כפי שראינו בפרק השני, הביטוי הגרפי של משתנה רציף הוא ההיסטוגרמה.
נתבונן למשל בהיסטוגרמה הבאה, שמתארת תוצאות מדגם על גבהים של אנשים:
כל מלבן בהיסטוגרמה נותן ביטוי לקבוצת גובה שנקראת מחלקה. בכל מחלקה נכללים האנשים שגובהם נע בין הערכים הנקובים בקצוות המלבן.
רוחב כל מחלקה בהיסטוגרמה הזאת הוא 10 ס”מ.
עבור מדגם גדול יותר (יותר תצפיות) בוחרים בד”כ במחלקות צרות יותר למשל ברוחב של 5 ס”מ:
העקום הנורמלי (צורת הפעמון)
ככל שהמדגם יגדל נפצל את התוצאות ליותר מחלקות. והמלבנים הפנימיים בהיסטוגרמה יהיו יותר  צרים ובמקביל גובהן של המדרגות בקו החיצוני של ההיסטוגרמה יקטן והוא יראה כשיני משור זעירים.
כשהמדגם כולל כמות אין סופית של תצפיות ( = גדולה מאוד) הקו החיצון יהפך לקו חלק ורציף.
העקום הנורמלי (צורת הפעמון)
היסטוגרמה כזאת נקראת “פעמון גאוס”.
פעמון- על שום צורתה. גאוס  – על שמו של המתמטיקאי הגרמני קארל פרידריך גאוס (1777-1855).
פעמון גאוס הוא ההיסטוגרמה המתארת את ההתפלגות הנורמלית ולכן הוא נקרא גם העקום הנורמלי.
 

אנא שתפו כדי שגם אחרים יוכלו להיעזר

Facebook
Twitter
LinkedIn

מאמרים נוספים

תוכן העניינים